我们提出了Covy - 一个机器人平台,可在Covid-19等大流行期间促进社会疏远。Covy具有一种新颖的复合视觉系统,使其能够检测到社会距离的破坏,最多可达16m。Covy使用混合导航堆栈自动地导航其周围环境,该堆栈结合了深钢筋学习(DRL)和概率定位方法。我们通过模拟和现实环境中的大量实验构建了完整的系统并评估了Covy的性能。除其他外,我们的结果表明,与基于DRL的纯解决方案相比,混合导航堆栈更强大。
translated by 谷歌翻译
Are extralinguistic signals such as image pixels crucial for inducing constituency grammars? While past work has shown substantial gains from multimodal cues, we investigate whether such gains persist in the presence of rich information from large language models (LLMs). We find that our approach, LLM-based C-PCFG (LC-PCFG), outperforms previous multi-modal methods on the task of unsupervised constituency parsing, achieving state-of-the-art performance on a variety of datasets. Moreover, LC-PCFG results in an over 50% reduction in parameter count, and speedups in training time of 1.7x for image-aided models and more than 5x for video-aided models, respectively. These results challenge the notion that extralinguistic signals such as image pixels are needed for unsupervised grammar induction, and point to the need for better text-only baselines in evaluating the need of multi-modality for the task.
translated by 谷歌翻译
PyTorch Adapt is a library for domain adaptation, a type of machine learning algorithm that re-purposes existing models to work in new domains. It is a fully-featured toolkit, allowing users to create a complete train/test pipeline in a few lines of code. It is also modular, so users can import just the parts they need, and not worry about being locked into a framework. One defining feature of this library is its customizability. In particular, complex training algorithms can be easily modified and combined, thanks to a system of composable, lazily-evaluated hooks. In this technical report, we explain in detail these features and the overall design of the library. Code is available at https://www.github.com/KevinMusgrave/pytorch-adapt
translated by 谷歌翻译
Angluin的L*算法使用会员资格和等价查询了解了常规语言的最低(完整)确定性有限自动机(DFA)。它的概率近似正确(PAC)版本用足够大的随机会员查询替换等效查询,以使答案获得高级信心。因此,它可以应用于任何类型的(也是非规范)设备,可以将其视为合成自动机的算法,该算法根据观测值抽象该设备的行为。在这里,我们对Angluin的PAC学习算法对通过引入一些噪音从DFA获得的设备感兴趣。更确切地说,我们研究盎格鲁因算法是否会降低噪声并产生与原始设备更接近原始设备的DFA。我们提出了几种介绍噪声的方法:(1)嘈杂的设备将单词的分类W.R.T.倒置。具有很小概率的DFA,(2)嘈杂的设备在询问其分类W.R.T.之前用小概率修改了单词的字母。 DFA和(3)嘈杂的设备结合了W.R.T.单词的分类。 DFA及其分类W.R.T.柜台自动机。我们的实验是在数百个DFA上进行的。直言不讳地表明,我们的主要贡献表明:(1)每当随机过程产生嘈杂的设备时,盎格鲁因算法的行为都很好,(2)但使用结构化的噪声却很差,并且(3)几乎肯定是随机性的产量具有非竞争性语言的系统。
translated by 谷歌翻译
值得怀疑的是,动物具有其四肢的完美逆模型(例如,必须在每个关节上应用什么肌肉收缩才能到达太空中的特定位置)。但是,在机器人控制中,将ARM的最终效应器移至目标位置或沿目标轨迹需要准确的前进和逆模型。在这里,我们证明,通过从交互中学习过渡(正向)模型,我们可以使用它来推动摊销策略的学习。因此,我们重新审视了与深度主动推理框架有关的策略优化,并描述了一个模块化神经网络体系结构,该模块化神经网络体系结构同时从预测错误中学习了系统动力学以及生成合适的连续控制命令以达到所需参考位置的随机策略。我们通过将模型与线性二次调节器的基线进行比较来评估该模型,并以其他步骤来朝着类似人类的运动控制方向进行比较。
translated by 谷歌翻译
预训练的语言模型(PLM)通常会利用单语和多语言数据集的优势,该数据集可以在线免费获得,以在部署到特定任务中之前获取一般或混合域知识。最近提出了超大型PLM(XLPLM),以声称对较小尺寸的PLM(例如机器翻译(MT)任务)声称最高性能。这些XLPLM包括Meta-AI的WMT21密度24宽-EN-X和NLLB。 \ textIt {在这项工作中,我们检查XLPLM是否绝对优于较小尺寸的PLM,在针对特定域的MTS中进行微调。}我们使用了不同大小的两个不同的内域数据:商业自动化内部数据和\ textbf {临床}在WMT2022上共享了Clinspen2022挑战的任务数据。我们选择受欢迎的玛丽安·赫尔辛基(Marian Helsinki)作为较小尺寸的PLM和来自Meta-AI的两个大型大型转换器作为XLPLM。我们的实验研究表明,1)在较小尺寸的内域商业汽车数据上,XLPLM WMT21密度24宽24宽-EN-X确实显示出使用S \ TextSc {acre} BLEU和HLEU指标的评估得分要好得多。玛丽安(Marian),即使其得分提高率低于微调后的玛丽安(Marian); 2)在相对较大尺寸的精心准备的临床数据微调上,XLPLM NLLB \ textbf {倾向于失去}其优于较小尺寸的Marian在两个子任务(临床术语和本体概念)上使用Clinspen提供的指标Meteor,Meteor,Marian的优势。 Comet和Rouge-L,并且在所有指标上完全输给了Marian,包括S \ textsc {acre} bleu and Bleu; 3)\ textbf {指标并不总是同意}在相同的任务上使用相同的模型输出相互同意。
translated by 谷歌翻译
深度强化学习(或仅仅是“ RL”)在工业和研究应用中广受欢迎。但是,它仍然受到一些关键限制,从而减慢了广泛的采用。它的性能对初始条件和非确定性敏感。为了释放这些挑战,我们提出了一种建立RL代理合奏的程序,以有效地建立更好的本地决策,以实现长期累积的回报。首次进行了数百个实验,以比较2个电力控制环境中的不同集合构造程序。我们发现,由4个代理商组成的合奏提高了46%的累积奖励,将重现性提高了3.6,并且可以自然有效地训练和预测GPU和CPU。
translated by 谷歌翻译
相机陷阱彻底改变了许多物种的动物研究,这些物种以前由于其栖息地或行为而几乎无法观察到。它们通常是固定在触发时拍摄短序列图像的树上的相机。深度学习有可能克服工作量以根据分类单元或空图像自动化图像分类。但是,标准的深神经网络分类器失败,因为动物通常代表了高清图像的一小部分。这就是为什么我们提出一个名为“弱对象检测”的工作流程,以更快的速度rcnn+fpn适合这一挑战。该模型受到弱监督,因为它仅需要每个图像的动物分类量标签,但不需要任何手动边界框注释。首先,它会使用来自多个帧的运动自动执行弱监督的边界框注释。然后,它使用此薄弱的监督训练更快的RCNN+FPN模型。来自巴布亚新几内亚和密苏里州生物多样性监测活动的两个数据集获得了实验结果,然后在易于重复的测试台上获得了实验结果。
translated by 谷歌翻译
深度神经网络(DNN)的集合已经实现了定性预测,但它们是计算和记忆密集型的。因此,需求越来越多,以使他们通过可用的计算资源来回答大量的请求。与最近针对单个DNN的预测推理服务器和推理框架的计划不同,我们提出了一个新的软件层,以灵活性和效率DNNS的合奏服务。我们的推理系统设计了几项技术创新。首先,我们提出了一个新的程序,以在设备(CPU或GPU)和DNN实例之间找到良好的分配矩阵。它连续运行最差的功能,可以将DNN分配到存储器设备和贪婪的算法中,以优化分配设置并加快合奏。其次,我们根据多个过程设计推理系统,以异步运行:批处理,预测和结合规则,具有有效的内部通信方案,以避免开销。实验显示了极端情况下的灵活性和效率:成功地将12个重型DNN的合奏提供到4 GPU中,而在相反的相反,一个单个DNN多线程为16 GPU。它还胜过简单的基线,该基线包括在图像分类任务上通过高达2.7倍的加速度优化DNN的批处理大小。
translated by 谷歌翻译
结合(或带有结合)的自动化机器学习试图自动构建深度神经网络(DNNS)的合奏,以实现定性的预测。众所周知,DNN的合奏避免过度合身,但它们是记忆和耗时的方法。因此,理想的汽车将在一次运行时间内产生有关准确性和推理速度的不同集合。尽管以前的AutoML专注于搜索最佳模型以最大化其概括能力,但我们宁愿提出新的Automl来构建一个较大的精确和多样化的单个模型的库,以构建合奏。首先,我们的广泛基准显示异步超频带是一种有效且可靠的方法,可以构建大量不同的模型来组合它们。然后,提出了一种基于多目标贪婪算法的新合奏选择方法,以通过控制其计算成本来生成准确的合奏。最后,我们提出了一种新型算法,以根据分配优化优化GPU群集中DNNS集合的推断。使用集合方法产生的自动素体在训练阶段和推理阶段都使用有效的GPU簇在两个数据集上显示出强大的结果。
translated by 谷歌翻译